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Stress Relaxation in Molten Polymers. I1 

C. MUSSA and V. TABLINO, Monleccrtini S.p.A. and Istituto Chimico 
dell’ Universiti di Torino, I t d y  

In previous work’ there has been suggested an evaluation of the elastic 
Such energy stored within a molten polymer in a viscous steady flow. 

evaluation waa baaed on the consideration of the energy W M  defined by: 

W M  = (1/2)jssAm mt = ( ‘ / P ) ’ ) ; a d  

where j.. is the rate of shear during viscous steady flow and I& is the shear 
stress during relaxation; the integral A is extended throughout the whole 
relaxation time. Attention has been drawn to this integral, which was 
termed the relaxation area. It was shown that W M  is the elastic energy 
stored within an “equivalent” system of Maxwell bodies coupled in 
parallel and defined by the following conditions: (a) it relaxes in the same 
way as the real polymer ; (b)  it exhibits the same viscosity under the same 
steady flow conditions. 

Although this method was found to be practically useful in comparative 
investigations on elastic effects arising when molten polymers are p r o c d ,  
it will be shown now that a different evaluation of such effects can be 
suggested, which yields a closer agreement with the experimental features 
of stress relaxation phenomena. 

The criteria on which the method of evaluation suggested here is based 
are the following. 

(1) The stress relaxation after cessation of viscous steady flow of a 
molten polymer is considered quite apart from the steady flow itself, 
because the wriggling macromolecular motions occurring within the 
polymer melt during stress relaxation are different from the macroscopic 
and measurable motions of the polymer in the bulk during the steady 
flow. 

Analytically, in stress relaxation, the “nonmeasurable” shear strains 
y (and their rates -3) are different from those appearing in the steady flow 
formulas; also the viscosities governing the two phenomena cannot be 
identified a prior;. 

(2) The shapes and the features which were found experimentally 
to characterize the stress relaxation curves (the stress-time relations) 
observed in a large number of instances are assumed as a basis for the 
analytical characterization. 
(3) The relaxation phenomena alone are not sufficient to permit an 

absolute evaluation of the energies concerned; it is clear that the same 
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relaxation curve is shown by systems of widely different overall dimensions: 
for instance, the same relaxation curve can be given by a system of strong 
springs and high viscosity dashpots or by weak springs and low viscosity 
dashpots; it is evident that the energies are different in the two cases. 

Features of the Relaxation Curves 

The most typical feature has been called in a former workZ “relaxation 
isochronism.” It consists in the following: the stress, when the relaxation 
begins, falls rapidly from the initial value a,. (the steady flow stress) to 
lower ones, then it continues to decrease with a stress-time law which is 
practically independent of the initial value ass of the stress when the latter 
is higher than a given limit. 

Much more, it was already pointed out by Kepes3 that there is a definite 
trend towards an inversion of the expected stress-time dependence, namely, 
a t  a given low value of the relaxation stress, the corresponding time for a 
relaxation curve starting from a given high initial stress is somewhat smaller 
than the time given by a relaxation curve starting from a lower initial 
stress. In other words, the relaxation curves corresponding to different 
initial stresses intersect each other (see Fig. 1). We share the opinion of 
Kepesa that such inversion of the run is but a second-order effect, bound 
with (possibly nonreversible) transformations of the polymeric melt 
brought about by the highest shear stresses, and occurring during the flow 

Fig. 1. hog-lot plot of relaxation curvea for sample LPP I at 200°C. by different initial 
streasea, a. 
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as.well as during long-term relaxation (times as long as some hours have 
been recorded). Therefore, in the following this inversion will be neglected 
as a secondary perturbing and poorly reproducible effect. 

The much better defined effect called relaxation isochronism will be 
considered here as fundamental, in order to state an analysis of the stress 
relaxation of molten polymers. From a quantitative point of View, it has 
been found that, within the limits of accuracy of the present calculation, 
the new relaxation parameters which will be defined by this analysis are 
practically unaffected when a single mean isochronic relaxation curve is 
assumed instead of the slightly different experimental ones. 

Another feature is to be pointed out: the time lag between two relaxation 
curves beginning from different 8;- in most cases was found to be of the 
same order of magnitude a t  widely different relaxation stresses. Within 
the accuracy limits into which the relaxation isochronism is valid, such 
time lag can be considered as constant. Then, the relaxation isochronism 
itself appears no more as an absolute feature: ‘two stress-time curves 
appear as isochronic when the time lag existing between them (which is 
relevant only at  the highest stress values) becomes small when compared 
with the total relaxation time. As will be seen later, the isochronism, the 
constancy of the time lag between different relaxation curves and, there- 
fore, the very parameters defined on this basis will appear as limiting 
features which are the more valid, the higher are the initial stresses. 

In Figure 1 are shown some typical stress-time curves (in a log-log plot, 
in order to cover the broad field of times and stresses). The isochronic 
region is evident, as well as the inversion phenomenon. 

The relaxation isochronism is clearly related to the non-Hookean char- 
acter of the elasticity which is effective in such phenomena. 

The classical analytical proceedings of rheology involve the assumption 
of linear (Hookean) elasticity; such assumption can be made as far as 
small strains and comparatively low stresses are considered. Actually, 
the strains involved after cessation of an indefinite steady flow are the high- 
est possible, hence they cannot be assumed to be small. 

As it was pointed out by Clae~son,~ the existence of a relaxation iso- 
chronism can be dealt with as a lack of “memory” of the viscoelastic ele- 
ments taking part, firstly, to the steady flow, then, to the stress relaxation. 
In fact, the initial value of the stress existing in the molten mass during 
the steady flow is no longer wholly ‘(remembered” when it has been higher 
than a given limit. 

We will now try to define some nonlinear stress-strain laws which can 
provide isochronic or quasi-isochronic relaxation curves possibly closer 
to the experimental ones. 

Stress-Strain Laws of Nonlinear Elements 

When 7 are the shear strains and 8; are the shear stresses, it is assumed 
that the stressstrain curves of the elastic elements in the polymer melt 
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must conform to the general condition that the derivative dy /d& is a 
decreasing function of the stress. 

We will consider now two particular types of such functions. 
The first type is defined by the general formula: 

d y / d a  = Y k a z - l / ( a k  -k a)" (1) 

where 'yk and QS& are characteristic strains and stresses defining, together 
with the exponent a, a particular kind of nonlinear elasticity. 

The resulting strain is: 

y = [?'k/(l - a)]{ [ ( a / a k )  + 11'-" - 1 1 (2) 

For a = 1 this is: 

?' = Yk In[(% + a k ) / a k l  (3) 

and, for a > 1, y tends towards an asymptotic value 

7-  = yk/(a - 1) (4) 

J k  Y k j a k  = $20 (dy/dllC) (5 )  

It is convenient to define a characteristic compliance J k :  

Nonlinear elements of this type are defined by the three parameters 
yk, a k ,  a. We can also 
take into account a less general type, characterized by a faster trend to- 
wards an asymptotic value yk of the strain. It is defined by the equation: 

This will be called here the "parabolic" type. 

d y / d a  = (Yk - Y ) / a k  

7 = Ykf1 - exp {-a/ak)] 

(6) 

(7) 

The corresponding stressstrain curve is : 

Such an element, which is defined only by two parameters ( Y k , Z k )  is 
termed here an element of the exponential type. 

We will come back now to the examination of the experimental data, in 
order to state some general rules allowing a choice of the elastic nonlinear 
elements and of their grouping. 

Grouping of Nonlinear Elements 

In classical rheological investigations of noncrosslinked polymers, a 
system of elementary Maxwell bodies grouped in parallel is adopted ; 
this procedure gives rise to a rather arbitrary partition of the stress among 
the elementary bodies; this partition contradicts the physical intuition, 
suggesting a unique stress spread throughout the whole molten polymer. 
On the other hand, a system of linear Maxwell bodies coupled in series is 
equivalent to a single element, while a system of nonlinear bodies coupled 
in series has no simple single equivalent. 
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The general differential equation of the free relaxation is assumed to be 
the following: 

Q = -  &ldL (8) 

We will consider now a system of i elastic elements (linear and nonlinear) 
coupled in series with each other and with a single dmhpot having an 
equivalent viscosity t e .  For such a system, eq. (8) becomes: 

Q = -  qe?dyrldl (9) 
S 

The same equation holds also for a system of i elastic elements coupled 
in series, with any one of which a different individual viscosity T i  is as- 
sociated in such a way that the stress (which is equal for all elements), 
is related with the strain -yr of any single ith element by the relationship: 

a = -  ?,dT,ldl 

l/% = writ 
provided that it be: 

i 

Assuming that the viscosities, the stressstrain laws and their derivatives 
are time-independent (more exactly, that they do not have the time as an 
independent variable) by defining : 

FtW = . h e ( d r i / d a >  (mla) (10) 
and by integration of eq. (9) under the condition that Q is equal to a.. 
for t = 0 we obtain eq. (11): 

t = z[F:(am) - F,(PC)I (11) 
i 

Let us consider, now, two different relaxation curves starting from two 
different initial values of the stress: a'88 and a',. At any given value Q 
of the relaxing stress the corresponding times t' and 1' must be related by 
eq. (12), easily derived from eq. (11): 

At = 1' - t' = X[F:(Z',) - F,(Q',)] (12) 
S 

This formula means that, in the case of elastic elements coupled in series, 
when the associated viscosities and the stress-strain laws are time-inde- 
pendent, the relaxation curves corresponding to different initial stresses are 
obtained from each other simply by shifting one of them by a time lag 
At which, according to eq. (12), is a function of the initial stresses alone. 

As was said before, if we suppose the present analysis to be valid as a 
limit for increasing initial stresses, the experimental relaxation curves do 
follow, at least in a semiquantitative way, the condition stated here, when 
the limits of reproducibility of the data and the experimental and calcula- 
tive accuracy are taken into account. 
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As a consequence of these considerations, we have chosen a system of 
elastic elements coupled in series. One of such elements can be linear, 
while the others must be nonlinear. 

The type of nonlinearity will be selected according to the following 
considerations : 

By constant (namely, stress-independent) viscosities, the relaxation 
area is given by the general formula: 

(13) A = . I ’ o r n G 3  = tle?ymf 
a 

where ysst are the maximum strains (corresponding to the initial stress 
reached during the steady flow). 
Thus, eq. (13) means that when the relaxation areas for increasing values of 

the initial stress and for constant te, tend to a finite limit, the strains, too, 
must tend to a finite limit, namely we must choose an asymptotic stress- 
strain law, such as the one of the parabolic type with a! > 1 or the expo- 
nential one of eq. (7). 

It was found in our experiments that the relaxation areas show a trend 
towards an aspptot ic  behavior when they are plotted as a function of the 
initial stresses. We cannot exclude, nevertheless, the existence of a com- 
paratively little relevant increase of the relaxation area with rising initial 
stress. Such an increase corresponds to an apparently linear elastic com- 
ponent associated with the lowest values of the relaxation times (some 
fractions of a second), hence with the lowest values of the compliance: 
apparently, the compliance of the wholly stretched polymer chains. 

We have preferred to adopt the exponential type of nonlinear elastic 
behavior, because (a) the analytical proceedings are simpler, and it is al- 
ways preferable to choose the system introducing the smallest number of 
parameters and (b)  the exponential model corresponds more closely to the 
idea of elastic elements having a nearly constant elastic modulus up to a 
given limit of the strain, then, beyond this limit, behaving as practically 
inextensible. 

Analysis by Means of Exponential Bodies in Series 

The integration of eq. (8) taking into account eqs. (5) ,  (6),  and (7) 
gives, in the case of a single nonlinear exponential element, and assuming a 
constant viscosity 

t = rk[Et(-a/ak) - El. - ( a m / a k ) ]  (14) 

where 7 k  = vJk is a characteristic relaxation time, z = a / a k  is a reduced 
stress, 

and E,(x) is the exponential integral function. 
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Taking into account i elementary bodies grouped in series, eq. (16) is 
obtmined: 

t = T H  In + 2Tf[Ef(--Q/akt)  - E<(-aas/akf)] (16) 
i 

where 

T f  = tleYkt/akr = d k f  

The term with T H  = 7 e J H  is a possible contribution from a Hookean 
spring with the lowest compliance JH; T f ,  I&kf/Yki. are the unknown param- 
eters of the non-Hookean elements. can be 
determined by matching eq. (16) with the experimental data following a 
procedure by trial and error (beginning from the lowest relaxation times). 

A discrete relaxation spectrum ( T f ,  a k f )  is obtained in this way. The 
matching of the formulas with the experimental data shows that a contin- 
uous spectrum, when it may be calculated, will probably provide a better 
fit. 

A first rough analysis in discrete spectra of some experimental instances 
will be given now, in order to investigate the possible meanings of the an* 
lytical method outlined here. 

Experimental Examples 

The parameters T i  and 

We consider here the same samples examined in the preceding work,' 
namely: (A) a low pressure polyethylene (LPP I) of intrinsic Viscosity 
1.30 dl./g. (measured in tetralin a t  135OC.); (B) a low pressure polyethyl- 
ene (LPP 11) of intrinsic viscosity 1.70 dl./g. (in tetralin at  135OC.); 
(C) a high pressure polyethylene (HPP) having a melt index 2 and an in- 
trinsic viscosity of 1.05 dl./g. (in xylene a t  75OC.) for which the long- 
branching index (according to Beasley5) was evaluatede to be B = 0.34, 
corresponding to an heterogeneity ratio M J M ,  = 3.3; (D) a specimen 
of natural rubber (NR) (unvulcanized) having an intrinsic viscosity of 
1.80 dl./g. (in toluene, 25OC.) after a heat treatment (24 hr. at 12OC.). 
As was pointed out by us,' such heat treatment was followed by slight 
crosslinking. 

The results of our analysis are summarized in Table I. Samples LPP I 
and HPP are characterized by a TH and by two nonlinear elements. In the 
case of sample LPP 11, a third nonlinear element was found to be necessary, 
while for natural rubber (NR) the determination of the linear component 
( T H )  was not possible,and two nonlinear elementswere found to be sufficient. 

The relaxation areas were calculated by means of eq. (17) : 

a 

and were compared with the ones calculated graphically from the experi- 
mental plot. 

We have tried also to obtain an absolute evaluation of the stored elastic 
energy, by introducing a further working hypothesis, namely, that the 
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TABLE 
ExDerimental Valuea of the 

ah, Z k t ,  
Temp., m, 71, dynes/ n, dynes/ 

Sample "C. sec. sec. cm.* sec. c n 4  

Low pressure 
polyethylene, 
sample I 
(LPP I)  

Low pressure 
polyethylene 
sample I1 
(LPP 11) 

High pressure 
polyethylene 
( HPP ) 

Natural 
rubber 
(NR) 

160 

180 

200 

160 

180 

200 

160 

180 

200 

160 
180 
200 

0.6 

0.5 

0.4 

0.8 

0.6 

0.4 

0.8 

0.7  

0.6 

- 
- 
- 

39 

25 

14 

380 

230 

170 

350 

160 

110 

560 
550 
540 

2,100 

2,050 

2,000 

6,400 

6,200 

6,000 

5.800 

4,000 

2,500 

8,ooO 
7,000 
6,000 

210 

105 

65 

1,600 

920 

860 

8,OOO 

6,500 

5,500 

8,OOO 
5,500 
3,500 

260 

200 

180 

1,400 

1,300 

1,200 

200 

200 

200 

1,500 
1,500 
1,500 

equivalent viscosity qe is equal to the Newtonian viscosity I]N deduced 
from the flow curves of the samples at any given temperature. 

The stored elastic energy, under this assumption, is expressed by eq. (18) : 

i 

The general formula giving the elastic energy stored within the assumed 
system is : 

W = (1/88) [ ( 7 H a s e 2 / 2 )  + z 7 f a k f 2 ]  (19) 
i 

It is seen that, in order to calculate W ,  it is necessary to know the vis- 
cosity qe or the characteristic compliances JB, J f .  

Such quantities cannot be deduced from the stress relaxation experiments 
alone. 

In order to check how much the present analysis corresponds to the actual 
relaxation behavior of the real samples, the experimental relaxation curves 
are confronted with the ones which can be calculated on the basis of the 
data of Table I. In Table I1 this comparison is made in some instances. 
It is seen that the higher the initial stresses, the better is the agreement of 
the theoretical and the experimental data. 
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I 
Strees Relaxation Parameters 

a k t r  A,  pokes X lod6 ??, 
7 8 ,  dynes/ Po- 

Bec. cm.' Calc. Meas. WN, ergs/cm.3 X 10- A / ~ N  

1.62 

0.90 

1.67 

0.91 

2 x 10-4~~' + 
1.24 x 103 

2 x l O d B ; S *  + 
0.91 x 10' 

2 x 10-4~4 + 
0.58 X 10' 

12 x 10' 

12 x 10' 

12 x 108 

30 X lo* 

14 X 10' 

7.5 x 10s 

0.25 X lo-%,,'+ 

0.30 X 1O-Was' + 
0.32 X + 
1 x 1 0 4 ~ 4  + 
1.7 X lo-%* + 
2.5 X 10-Wesa + 
43 x 10' 
43 x 10' 
43 x 10' 

1.5 

1.2 

1.08 

0.75 

0.52 

4.2 

0.53 0.52 1 - 

13,000 

12,000 

11 ,000 

- 

150 

150 

150 

67.3 

45.1 

68.1 

45.4 

37.4 

16 

10 

6.5 

4.5 

5.5 

9.3 

37.4 

37.3 

20 

14.1 

38.2 

20.8 

14.8 

4 

2 10 

1.2 11.8 

164.5 
120.1 
86.1 

12.5 
9 
6.3 

13.2 
13.4 
13.5 

165 
121 
85 

~~~~ 

Considerations about the Resrt#s of the Suggested Analysis 

A comparative examination of the drtta of Table I allows the following 
remarks. 

(I) The time constants (relaxation tisaes) are all decreasing functions 
of the temperature. The relaxation times are the product of a viscosity 
by a compliance; thus the first factor (which, in its turn, is an exponential 
function of the reciprocal absolute temperature) is obviously overwhelming. 

(2) The contribution of the linear element (713) is always negligible; 
the relaxation phenomenon is ruled primarily by nonlinear elastic factors. 

(3) The characteristic stresses PCkt are also nonincreasing functions of 
the temperature; & is practically constant for linear chains, as those of 
the LPP's, while it varies more markedly for long-branched (HPP) and 
crosslinked (NR) samples; for elements of a higher order (corresponding 
to 7 2  and r3) the characteristic stresses do not change with the temperature; 
apparently, they are bound with a kind of elasticity which is more structural 
than entropic. 

(4) For LPP I1 and HPP the products (r&) are nearly constants, 
for LPP I they decrease with increasing rt  while for NR they increase. 

(5)  The calculated and measured relaxation areas practically coincide; 
this is a result, not a fact. Such an agreement must be c o d e r e d  as a 
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TABLE I1 
Stress Relaxation for Sample LPP I at 160OC. 

Time, aec. 

Stress, dynea/cm.* Meaa. Calc. 

43,200 
8,700 
4,390 
1,730 

870 
384 
192 
96 

18,900 
8,700 
4,390 
1,730 

870 
384 
192 
96 

3,380 
1,730 

870 
384 
192 
96 

0 
0 . 9  
3 . 5  

13 
28 
60 

130 
266 

0 
0 .6  
2 . 5  

12 
29 
61 

132 
2?l 

0 
6 

20 
66 

142 
291 

0 
0 . 9  
3 . 2  

13 
28.5 
72 

130 
265 

0 
0.58 
2.52 

12.7 
29.8 
14 

150 
260 

0 
8 . 6  

25.6 
70.3 

146 
255 

necessary (not sufficient) condition in order to state whether the analysis 
in elementary components is correct. 

(6) For initial stresses of a practical range, the most important contri- 
bution is represented by the constant term (the asymptotic energy). 
Two distinct types of behavior are shown; for shorter chains (LPP I and 
HPP) the asymptotic energy decreases with increasing temperature. 
Since the stored energy, in the linear approximation, is proportional to the 
reciprocal elastic modulus, this fact means, that for shorter chains the elas- 
ticity has a prevailing entropical character. For longer (LPP 11) and 
crosslinked (NR) chains, it is noteworthy that the asymptotic energy is 
practically constant; this fact can be explained as a consequence of a pre- 
vailing positional character of this kind of elasticity. 

(7) In the last column of Table I1 is reported the ratio between the 
relaxation area A (having the V e  dimensions as viscosity) and the cor- 
responding Newtonian viscosity VN of the polymer. It is suggested that 
this ratio be termed the e2asticity number. This number is particularly 
interesting because (a) it gives a marked quantitative distinction of the 
degree of elasticity of the investigated polymers, in good agreement with 
their technological behavior and (b) because it results directly from ob- 
jective and measurable data, with a minimum of analytical transformations. 
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For poorly elastic polymers (LPP I) the elasticity number is low and de- 
creases with the temperature (as the asymptotic energy); for the other, 
more elastic polymers the much larger elasticity numbers are nondecreasing 
functions of the temperature, showing a trend toward constancy. 

(8) The energy WN and the elasticity number A / ~ N  are subjected to a 
drawback which limits their accuracy: the Newtonian viscosity V N  is 
not well defined by high melt viscosities. Highly viscous polymers at low 
rates of shear show a viscosity indefinitely increasing with decreasing y, 
namely they behave similarly to a Bingham body; in our opinion such 
behavior occurs when + is lower than the reciprocal time constant of the 
rebuilding of the pseudoreticular structure which is responsible for this 
behavior as well as of the existence of a yield point of polymer melts. As a 
consequence, sometimes (in our instances, see samples LPP I1 and NR) the 
flow curves do not show a well-defined Newtonian region, and the evalua- 
tion of the Newtonian viscosity will be somewhat arbitrary, as far as 
these phenomena are not better understood. 
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synopsis 

A new analytical method is suggested for the evaluation of the stress relaxation 
phenomena arising when a viscous flow of molten polymers is suddenly stopped. This 
method is based on the consideration of the relaxation isochroniem and of other most 
typical featuws of the experimental streas-time relationships. Such features can be 
deduced by means of an analysis in elementary non-Hookean bodies in series having a 
stress-time law of a particular analytical type. Such an analysis is applied tg four sam- 
plea of high and low pressure polyethylenes and natural rubber. The new parameters 
defined in this way are discwed in order to state some correlations with the structural 
features. Attention is drawn on the importance of an elasticity number defined as the 
ratio of the relaxation area to the corresponding Newtonian viscosity. 

RbWtl6 
Une nouvelle mBthode analytique eet suggBrde pour Bvaluer les ph6nombnea de re- 

laxation qui ont lieu losqu’un dcoulement visqueux stationnaire est brusquement 
arr&t.4. La mdthode eat b&e sur l’observation dee caract.4ristiquea plus typiques des 
rdlations exp6rimentales entre le temps et  la tension de rblaxation, comme I’isochronisme 
de &laxation. Ces CaracGristiques peuvent &re dbduites par une analyse considdrant 
dea corps Blastiques Bldmentairee non-HookBens group6s en drie, ayant une loi Blaatique 
d’un type analytique particulier. Cette analyse est appliqude B quatre dchantillons de 
polydthylbne B haute et  baese pression et  au caoutchouc naturel. On montre un nombre 
Blastique d6fini par le rapport de l’aire de rdlaxation B la viscosit.4 Newtonienne corre- 
spondante. 
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Zusammenfassung 

Eine neue Methode zur Auawertung der Relaxationaeracheinungen bei geachmolzenen 
Polymeren wird vorgeachlagen. Die Methode beruht auf der Betrachtung des Re- 
laxations-Isochronismus, aowie anderer Eigenachaften der empiriachen Zeitspannunga- 
Beziehumgen. Solche Eigenachaften konnen aua einer Analyae elementarer nicht- 
hearer Kbrper abgeleitet werden, die durch ein DehnungsSpannunga-Gtz eines 
beaonderen analytiachen Typua charakteriaiert sind. Vier Proben von Hoch- und 
Niederdruckpolygthylen und natiirlichem Kautschuk werden in dieaer Weiae analy- 
siert; die so erhaltenen Relaxationaparameter werden in ihren Beziehungen zu den 
Struktureigenachaften diakutiert. Die Elaatizitatszahl, niimlich daa Verhaltnia der 
Relaxationaflilche zur Newton’schen Vkkositat iat von besonderem Intereaae. 
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